首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1078篇
  免费   259篇
  国内免费   251篇
测绘学   61篇
大气科学   535篇
地球物理   292篇
地质学   361篇
海洋学   34篇
天文学   9篇
综合类   52篇
自然地理   244篇
  2024年   3篇
  2023年   16篇
  2022年   46篇
  2021年   57篇
  2020年   60篇
  2019年   49篇
  2018年   48篇
  2017年   72篇
  2016年   60篇
  2015年   72篇
  2014年   84篇
  2013年   119篇
  2012年   80篇
  2011年   75篇
  2010年   84篇
  2009年   83篇
  2008年   71篇
  2007年   70篇
  2006年   52篇
  2005年   39篇
  2004年   40篇
  2003年   34篇
  2002年   36篇
  2001年   32篇
  2000年   41篇
  1999年   25篇
  1998年   24篇
  1997年   17篇
  1996年   13篇
  1995年   23篇
  1994年   8篇
  1993年   6篇
  1992年   24篇
  1991年   3篇
  1990年   7篇
  1989年   3篇
  1988年   11篇
  1987年   1篇
排序方式: 共有1588条查询结果,搜索用时 15 毫秒
91.
The snow cover of the Northern Patagonia Icefield (NPI) was monitored after applying the Normalized Difference Snow Index (NDSI) and the Red/NIR band ratio to 134 Moderate Resolution Imaging Spectroradiometer (MODIS) images captured between 2000 and 2006. The final results show that the snow cover extent of the NPI fluctuates a lot in winter, in addition to its seasonal behaviour. The minimum snow cover extent of the period (3600 km2) was observed in March 2000 and the maximum (11,623 km2) in August 2001. We found that temperature accounts for approximately 76% of the variation of the snow cover extent over the entire icefield. We also show two different regimes of winter snow cover fluctuations corresponding to the eastern and the western sides of the icefield. The seasonality of the snow cover on the western side was determined by temperature rather than precipitation, while on the east side the seasonality of the snow cover was influenced by the seasonal behaviour of both temperature and precipitation. This difference can be explained by the two distinct climates: coastal and continental. The fluctuations in the winter snow cover extent were more pronounced and less controlled by temperature on the western side than on the eastern side of the icefield. Snow cover extent was correlated with temperature R2 = 0.75 and R2 = 0.74 for the western and eastern sides, respectively. Since limited meteorological data are available in this region, our investigation confirmed that the change in snow cover is an interesting climatic indicator over the NPI providing important insights in mass balance comprehension. Since snow and ice were distinguished snow cover fluctuations can be associated to fluctuations in the snow accumulation area of the NPI. In addition, days with minimum snow covers of summer season can be associated to the period in which Equilibrium Line Altitude (ELA) is the highest.  相似文献   
92.
一种基于MODIS积雪产品的雪线高度提取方法   总被引:3,自引:2,他引:1  
冰川雪线高度的遥感提取对冰川物质平衡研究具有重要意义。提出一种基于晴空环境下积雪覆盖频率的雪线高度提取方法。使用MOD10A1积雪产品中的像元积雪面积比例数据,提取了2000/2001-2014/2015年间高亚洲地区冰川消融期末雪线高度。使用实测的冰川年物质平衡资料和气象格网数据对提取的雪线高度变化的可信度进行分析。研究表明:近15 a高亚洲雪线高度变化及趋势具有明显的东西差异,雪线高度变化幅度自青藏高原内部地区向四周呈增加趋势,西部大于东部。提取的冰川雪线高度变化与观测的年物质平衡序列具有很高的相关性,对物质平衡波动的平均解释率可高达75%;与气象要素(气温、降水)的年际变化的相关性也较高,约61.58%的格网冰川雪线高度变化可以由夏季气温和季节降水解释。而高亚洲各分区冰川雪线高度的波动规律也与大气环流背景分布一致。因此提取的雪线高度变化具有冰川学意义,可以进一步应用于冰川物质平衡估算及模拟研究中。  相似文献   
93.
青藏高原积雪对高亚洲地区水和能量循环起着重要的反馈和调节作用,其变化影响着融雪性河流流量,对下游水资源和经济活动具有重要影响。中分辨率成像光谱仪(MODIS)具有较高的时空分辨率,被广泛应用于积雪遥感动态监测,然而光学遥感积雪受云层影响严重,且青藏高原地区水汽分布不均,局地对流活跃,积雪的赋存时间变化快,这给高原地区逐日积雪监测及其气候学制图带来挑战。在考虑青藏高原地形和积雪分布特征情况下,结合现有的云覆盖下积雪判别算法,采用8个不同方法的组合,逐步实现MODIS逐日无云积雪算法。选取2009年10月1日-2011年4月30日两个积雪季为研究期,并采用145个地面台站观测雪深数据对去云算法各步骤过程开展精度验证,结果表明:当积雪深度>3 cm时,逐日无云积雪产品总分类精度达到96.6%,积雪分类精度达83%,积雪判对概率(召回率)达到89.0%,算法可实现青藏高原地区逐日无云积雪动态监测和积雪覆盖气候学数据重建,对高亚洲地区的水、生态和灾害等全球环境变化影响研究具有重要的意义。  相似文献   
94.
化学分析中雪冰样品采集和预处理应注意的问题   总被引:1,自引:1,他引:0  
雪冰是重建过去时段甚至几十万年尺度气候环境状况的重要载体,其环境记录成为反演气候环境变化的重要依据。雪冰化学分析是实现这一目标的重要手段,其中雪冰样品的采集、运输及冰芯样品的提取和分割等过程是研究冰雪环境记录的关键环节。鉴于此,就上述过程的注意事项做了详细的阐述,并针对目前常规冰融系统中存在ICP-SMS样品颗粒溶解不完全、微量元素不精确等问题,引入了连续融解离散采样(CMDS)方法。  相似文献   
95.
基于AMSR-E的北疆地区积雪深度反演   总被引:3,自引:3,他引:0  
利用北疆地区2007/2008-2009/2010年度积雪季(12月至次年2月)的AMSR-E降轨19 GHz与37 GHz波段的水平极化亮温数据, 结合北疆地区45个气象台站的实测雪深数据, 建立了北疆地区基于AMSR-E亮度温度数据的雪深反演模型, 并对模型的精度进行评价. 结果显示: 雪深在3~10 cm时, 模型反演的雪深值负向平均误差为-5.1 cm, RMSE值为6.1 cm; 雪深在11~30 cm时, 模型反演雪深值的平均误差仅为2.6 cm, RMSE、 正向平均误差、 绝对平均误差均较小; 雪深大于30 cm时, 模型反演的各项误差较大. 用合成方法反演北疆地区2006/2007-2010/2011年度5个积雪季的平均雪深分布和最大雪深分布, 结果显示北疆地区积雪主要分布于北部阿尔泰山和南部天山一带, 其中阿勒泰地区所占比重最大, 中部的准噶尔盆地腹地、 克拉玛依地区雪层较浅.  相似文献   
96.
基于遥感的冰川信息提取方法研究进展   总被引:12,自引:6,他引:6  
彦立利  王建 《冰川冻土》2013,35(1):110-118
对冰川监测中常用的遥感卫星、 传感器及冰川信息提取方法等进行了综合评价, 常规方法中普遍认为比值法的精度最高, 新产生的面向对象分类和雷达干涉测量方法虽一定程度上提高了冰川提取精度, 但冰碛物仍是自动识别的难点. 针对表碛覆盖冰川虽发展了一些自动、 半自动的方法, 但这些方法还不够成熟、 不具有通用性. 积雪、 冰碛物和地面验证仍是冰川自动提取存在的重要问题, 发展更先进、 更成熟的方法是冰川研究的重要方向, 未来可以尝试采用粗糙集理论及ICESAT卫星波形提高冰川信息提取的精度.  相似文献   
97.
以木孜塔格峰地区为研究区,从不同坡度、坡向的样方内测量雪深和采集光谱,通过分析归一化差分雪盖指数(Normalized Difference Snow Index,NDSI)、反照率、HJ-1卫星的红外波段反射率与雪深的相关关系,建立了适用于HJ-1星的积雪深度反演模型,估算出2012年4月14日-25日木孜塔格峰地区的雪深时空变化,并结合实测数据进行验证。结果表明:反照率反演模型的复相关系数为0.992;通过NDSI阈值区分混合雪盖像元和积雪像元,雪深估测精度可达92.78%。冰川区的反照率、NDSI与海拔的相关系数分别为0.626和0.733,且高海拔带反照率值明显高于低海拔带的反照率值。受西风带降雪的影响,非冰川区的北坡雪深值较大;西坡、南坡次之;东坡最小,且雪深最大值出现在坡度约等于10°处。雪深估测的相对误差随着样地的坡度增大而增加,坡度为15°时相对误差较大。  相似文献   
98.
积雪对自然环境和人类活动都有极其重要的影响。积雪参数(雪面积、雪深和雪水当量)反演对水文模型和气候变化研究有着实际的意义。然而,目前森林区的雪深遥感反演精度一直有待于进一步提高。东北地区是我国最大的天然林区和重要的季节性积雪区之一,本文利用FY3B卫星微波成像仪(MWRI)L1级亮温数据和L2级雪水当量数据,以及东北典型林区野外实测雪深数据,对Chang算法、NASA 96算法和FY3B雪深业务化反演算法进行了验证与分析。结果表明:在东北典型林区的雪深反演中,Chang算法和NASA 96算法反演的雪深波动都比较大,当森林覆盖度f≤0.6时,NASA 96算法表现比较好,均方根误差值在3种算法中较小,但当f >0.6时,NASA 96算法失真严重。当考虑纯森林像元(f=1)时,Chang算法低估了雪深47%。当f≤0.3时,FY3B业务化算法始终优于Chang算法。整体上,FY3B业务化算法相对稳定,具有较高的精度。  相似文献   
99.
近50年青藏高原东部冬季积雪的时空变化特征   总被引:2,自引:0,他引:2  
胡豪然  梁玲 《地理学报》2013,68(11):1493-1503
选取青藏高原东部地区1961-2010 年64 个测站的积雪数据,分析了冬季积雪日数的空间分布和年代际变化特征,结果表明:高原东部冬季积雪空间分布差异较大,巴颜喀拉山、唐古拉山和念青唐古拉山多雪且变率大,藏南谷地、川西干暖河谷地带及柴达木盆地少雪且变率小,这样的空间分布是由周边大气环流系统及复杂局地地形共同造成的;高原东部冬季积雪表现出“少—多—少”的年代际变化特征,分别在80 年代末和20 世纪末发生由少到多和由多到少的两次突变,尤其是20 世纪末的突变更为显著;降雪和气温的变化是影响积雪日数的重要因素,其中降雪的影响更为显著;80 年代末高原冬季降雪由少到多的突变是造成积雪日数发生相应变化的主要原因;20 世纪末高原冬季气温和降雪分别发生由低到高和由多到少突变,其影响叠加导致积雪日数发生了更为显著的突变。  相似文献   
100.
科学监测新疆叶尔羌河流域山区积雪面积及其变化特征对该区域的气候研究、雪水资源开发利用、环境灾害预报和生态环境保护等方面有重要意义. 利用2000-2012年近13 a的MOD10A2积雪产品提取研究区域内积雪,结合DEM数据分析研究区内积雪面积的动态变化特征. 结果显示:新疆叶尔羌河流域山区的积雪面积的年际变化幅度较大,其中,2005年和2009年积雪面积较大,2007年则为典型少雪年;年内变化差异显著,总体上呈现“M”型的特点,12月和3月处于高位,2月和8月处于低谷. 叶尔羌河流域山区积雪覆盖率随着海拔的上升逐渐增大,稳定积雪主要分布在海拔5 000 m以上的地区;不同坡向的积雪覆盖率差异比较明显,西北坡、东坡、东北坡的积雪覆盖率比北坡、东南坡、西坡、南坡的积雪覆盖率高,西北坡高达52.8%,南坡仅为20%. 叶尔羌河流域山区的积雪面积与气温呈负相关,与降水量呈正相关,积雪面积变化对气温因素更为敏感.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号